Reflectance calculation using Fresnel equations involves determining the reflection of light when it hits an interface between two different media. The Fresnel equations provide the reflectance for both perpendicular (s-polarized) and parallel (p-polarized) light components.

Fresnel Equations

For an interface between two media with refractive indices n_1 and n_2, and an incident angle θi:

Perpendicular (s-polarized) Light

The reflectance Ris given by: Rs=n1cosθin2cosθtn1cosθi+n2cosθt2R_s = \left| \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t} \right|^2


Parallel (p-polarized) Light

The reflectance RpR_p is given by: Rp=n2cosθin1cosθtn2cosθi+n1cosθt2R_p = \left| \frac{n_2 \cos \theta_i - n_1 \cos \theta_t}{n_2 \cos \theta_i + n_1 \cos \theta_t} \right|^2

Here, θt\theta_t is the angle of transmission (refraction), which can be found using Snell's Law: n1sinθi=n2sinθtn_1 \sin \theta_i = n_2 \sin \theta_t

Total Reflectance

For unpolarized light, the total reflectance RR is the average of RsR_s and RpR_p: R=Rs+Rp2R = \frac{R_s + R_p}{2}

R=(Rs+Rp)/2